Extremal Sparse Polynomial Systems over Local Fields

نویسندگان

  • J. MAURICE ROJAS
  • Bernd Sturmfels
چکیده

Consider a system F of n polynomials in n variables, with a total of n + k distinct exponent vectors, over any local field L. We discuss conjecturally tight upper and lower bounds on the maximal number of non-degenerate roots F can have over L, with all coordinates having fixed sign or fixed first digit, as a function of n and k only. In particular, for non-Archimedean L, we give the first non-trivial lower bounds in the case k − 1 ≤ n; and for general L we give new explicit extremal systems for k=2 and n≥1. A key tool in our proofs is the construction of n triangles in R with Minkowski sum having maximally many mixed facets. Résumé. Nous considérons un système F de n polynômes en n variables, avec une total de n + k vecteurs exponents distincts, sur un corps local quelconque L. Nous discutons des bornes conjecturales, inférieures et supérieures, sur le nombre maximal de racines nondégénérées que F peut avoir dans Ln, avec un signe ou premier chiffre fixe, en fonction de n et k seulement. En particulier, nous donnons les premières bornes inférieures non-triviales pour le cas k − 1≤n (dans le cadre non-Archimédien) et de nouveaux systèmes extrémaux explicite pour k = 2 et n ≥ 1 (pour un champ local quelconque L). Sauf pour un peu infrastructures tropicales, les preuves sont complètement combinatoire.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelization of the Wiedemann Large Sparse System Solver over Large Prime Fields For the partial fulfilment of the degree of Master of Technology

The discrete logarithm problem over finite fields serves as the source of security for several cryptographic primitives. The fastest known algorithms for solving the discrete logarithm problem require solutions of large sparse linear systems over large prime fields, and employ iterative solvers for this purpose. The published results on this topic are mainly focused on systems over binary field...

متن کامل

Extremal Trinomials over Quadratic Finite Fields

In the process of pursuing a finite field analogue of Descartes’ Rule, Bi, Cheng, and Rojas (2014) proved an upper bound of 2 √ q − 1 on the number of roots of a trinomial c1 + c2x a2 + c3x a3 ∈ Fq [x], conditional on the exponents satisfying δ = gcd(a2, a3, q − 1) = 1, and Cheng, Gao, Rojas, and Wan (2015) showed that this bound is near-optimal for many cases. Our project set out to refine the...

متن کامل

Extremal sparsity of the companion matrix of a polynomial∗

Let C be the companion matrix of a monic polynomial p over a field F. We prove that if A is a matrix whose entries are rational functions of the coefficients of p over F and whose characteristic polynomial is p, then A has at least as many nonzero entries as C.

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Solving sparse linear equations over finite fields

Ahstruct-A “coordinate recurrence” method for solving sparse systems of linear equations over finite fields is described. The algorithms discussed all require O( n,( w + nl) logkn,) field operations, where nI is the maximum dimension of the coefficient matrix, w is approximately the number of field operations required to apply the matrix to a test vector, and the value of k depends on the algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010